Accelerator Preparations for Future Fixed Target Experiments at Fermilab

Tevatron Stretcher Ring

Mike Syphers Fermilab

- o "Discussion of Tevatron Fixed Target Options after Run II," Fermilab Beams-doc-2849
- o "Tev120 -- Life after Run II?," Fermilab Beams-doc-2222
- Proposal P996 -- Measurement of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Decay at Fermilab
 - http://www.fnal.gov/directorate/program_planning/Nov2009PACPublic/kpnn_proposal_final.pdf

Run II Proton Availability

- Daily Operation
 - Set up p-pbar store in Tevatron, ...
 - Produce more antiprotons, and drive the **neutrino** program
 - time line governed by 15 HzBooster operation
 - 11 Booster pulses to MI every 2.2 s
 - 9 for NuMI
 - 2 for pbar production
 - Off-load phars to Recycler ~every hour
 - Spare BOO pulses (~4) to miniBooNE
 - 1 MI pulse to SY120 occasionally...

The Tevatron Stretcher

- With the Tevatron Collider Run II complete, the possibility will exist to use the Tevatron as a "stretcher" ring to provide high intensity, high duty factor beams to fixed target experiments
 - SY120/150 -- the existing SY120 program could be fed from the Tev, perhaps upgraded to 150 GeV
 - Kaons Redux -- Proposal P996 has been submitted for K^+ -> π^+ ν ν_{bar} search using Stretcher concept

NuMI/NOvA, after Run II

Following Run II, the Main Injector will accept up to 12
 Booster pulses to be sent to the NOvA experiment

o 20 15-Hz Booster cycles (1.333 sec) per NOvA cycle

Tevatron Stretcher

- As circumference of Tevatron is twice that of Main Injector, take two MI pulses to fill the Tevatron, followed by n pulses to NOvA
- Slow spill over the next n+1 MI cycles to fixed target experiments from the Tevatron

NOvA Impact

- Can have respectable, high duty factor beam with ~10% hit to NOvA
- Can use to feed MTest as well, with no further impact on NOvA

$T_0[s]$	df[%]	$\operatorname{hit}[\%]$	$P_{ave}[kW]$	$P_{max}[kW]$	$N_{max}[\mathrm{Tp/s}]$
16.67	90	20	137	153	6
23.33	93	14	98	106	4
30.00	94	11	76	81	3
43.33	96	8	53	55	2
56.67	97	6	40	42	2
70.00	98	5	33	34	1

Has Been Demonstrated

- Well, sort of ...
- ** KAMI had a short run at the end of the final Tevatron Fixed Target run -- the last beam resonantly extracted from the Tevatron! (Jan 2000)
- Performed at 150 GeV
 with very low intensity
 - $\sim (\sim 1 Tp/spill over 30 s)$

Comments, Considerations

- 1. May be able to use existing A0 proton abort system in this scenario.
 - 100 Tp @ 150 GeV ~ 15 Tp @ 1000 GeV
- 2. Improvements made to impedances and to damper systems during Run II would help with possible beam intensity-related instabilities.
- 3. Beam is ~2x larger at 150 GeV than at 800 GeV (for same emittance), so somewhat less aperture available for slow spill process.
- 4. Use barrier bucket scheme to contain beam during injection and slow spill -- no 53 MHz RF necessary (anode supplies reserved for MI/NOvA)
- 5. Reconfigure to 1983 optics in long straight sections. Re-establish QXR system.

Other Comments, Considerations -- II

- 6. No magnet ramping, low-beta optics removed, and lower magnet current (thus higher operating margin) --> more reliable operation of magnet system.
- 7. If operate at 120 GeV $b_2 \sim 25\%$ worse than at 150 GeV, would affect chromaticity range, dynamic aperture, etc. However, b_2 drifts with time and would eventually reach asymptotic value (toward zero) -- not so bad?
- 8. Note: 8 GeV program not affected whatsoever; Booster batches to fill MI on SY120 cycles are same as on NOvA cycles; same spare Booster cycles still available

30 min. drift at 660 A (150 GeV condition)

 $120 \ GeV = 528 \ A$

Tev150 Program

- With one proposal on the dockets, use of the Tevatron as a Stretcher allows for a fixed target program to develop
 - Kaon experiment proposed (P996)
 - MTest in operation @ 120 GeV; modify line to 150 GeV
 - Opens avenue to future experiments in SY, or in Tev
- Kaon proposes using CDF/B0; can explore either...
 - multiple extraction points from Tevatron, or
 - pulse separate extraction devices, orbit bumps during spill

Kaon Experiment at B0

- Would perform 1/2-int. resonant extraction (vertically) into horizontally bending Lambertson magnets and C-magnets
- Well-shielded beam dump in Collision Hall forward region; experiment "fits" within CDF Hall and access area

Illustration of the P996 beamline and detector sited within the B0 collision hall.

(from P996 Proposal)

MJS / Fermilab

Choice of Extraction Point

• A0

- Return to original Fixed Target layout; since at 150 rather than 800 GeV, could perhaps run with fewer elements
- Restore Electrostatic Septa at D0; restore FT optics

。 **BO**

- Put electrostatic septa at E0, with high-beta optics at both B0 and E0. May wish special straight section layout at B0 to give more clearance between circulating beam and experiment
- Can re-use A0 Lambertson magnets, rotated? (Need to extract vertically, not horizontally.)

MJS / Fermilab

Design Studies and Beam Tests

- What intensity can the Tevatron sustain at 150 GeV?
- How clean can slow extraction be at 150 GeV?
- Optical design/layout for Tevatron FT operation
- Ensure use of the A0 abort system for this scenario
 - proton-direction only
- Proper placement/re-commissioning of QXR system
- Develop RF requirements -- Barrier Bucket system
- Analysis of Power (Op.) requirements -- esp. Cryo
- Shielding requirements if use B0 as experimental region

M.IS / Fermilab

Proton Fixed Target Programs (ca. 2015)

- Future Daily Operation
 - Run NuMI/LBNE
 - Run microBooNE, g-2, Mu2e, target R&D, EDM, muCool, ...
 - Run MIPP, MTest, Drell-Yan, Kaon, ...
- o Plus...
 - NML/ILCTA (A0)
 - Project X
 - ...

MJS / Fermilab